Chapter 3

Linear and Quadratic Functions

Section 1
Linear Functions, Their Properties, and Linear Models

When an equation of a line is written in slope-intercept form with function notation we call it a linear function

$$
f(x)=m x+b \quad(m=\text { slope }, b=y \text {-intercept })
$$

Average Rate of change of a linear function is constant and its known as slope:

$$
\mathrm{m}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \frac{y_{1}-y_{2}}{x_{1}-x_{2}}
$$

Determining if increasing, decreasing, or constant is dependent on slope!

Increasing = positive slope

Decreasing $=$ negative slope

Constant $=$ zero slope

Modeling with a Linear Function

If the average rate of change is a constant m, a linear function $f(x)$ can be used to model the relation between the two variables as follows:

$$
f(x)=m x+b
$$

Where b is the value of f at 0 , that is $f(0)=b$

Example 1: (\# 21 pg. 133)
Determine whether the given function is linear or nonlinear. If it is linear, determine the equation of the line.

Example 2: (\#29 pg. 133)

$$
f(x)=4 x-1 \quad g(x)=-2 x+5
$$

a) Solve $f(x)=0$

$$
\begin{aligned}
4 x-1 & =0 \\
4 x & =1 \\
x & =1 / 4
\end{aligned}
$$

c) Solve $f(x)=g(x)$

$$
\begin{gathered}
4 x-1=-2 x+5 \\
6 x-1=5 \\
6 x=6 \\
x=1
\end{gathered}
$$

b) Solve $f(x)>0$

$$
\begin{gathered}
4 x-1>0 \\
4 x>1 \\
x>1 / 4
\end{gathered}
$$

d) Solve $f(x) \leq g(x)$

$$
\begin{aligned}
& 4 x-1 \leq-2 x+5 \\
& 6 x-1 \leq 5 \\
& 6 x \leq 6 \\
& x \leq 1
\end{aligned}
$$

Example 2 continued: (\#29 pg. 133)

$$
f(x)=4 x-1 \quad g(x)=-2 x+5
$$

$\rightarrow m=4, b=-1 \quad \rightarrow m=-2, b=5$
e) Graph $y=f(x)$ and $y=g(x)$ and label the point that represents the solution to the equation $f(x)=g(x)$.

Example 3: (\#31 pg. 133)

Use the following figure:

a) Solve $f(x)=50 \quad X=40$
c) Solve $f(x)=0 \quad X=-40$
e) Solve $f(x) \leq 80$
$x \leq 88$
b) Solve $\mathrm{f}(\mathrm{x})=80 \quad x=88$
d) Solve $\mathrm{f}(\mathrm{x})>50 \quad x>40$
f) Solve $0<f(x)<80-40<x<88$

Example 4: (\#37 pg. 134)
Car Rentals

$$
C(x)=0.25 x+35 ; x=\text { miles, } C=\text { cost }
$$

What is the cost if you drive 40 miles?

$$
\begin{gathered}
C=.25(40)+35 \\
10+35 \\
C=45 \Rightarrow \$ 45
\end{gathered}
$$

If the cost of renting the truck is $\$ 80$, how many miles did you drive?

$$
\begin{aligned}
& 80=.25 x+35 \\
& 45=.25 x \\
& 180=x \Rightarrow 180 \text { miles }
\end{aligned}
$$

Example 4 continued: (\#37 pg. 134)
Car Rentals

$$
C(x)=0.25 x+35 ; x=\text { miles, } C=\text { cost }
$$

Suppose you want the cost to be no more than $\$ 100$, what is the maximum number of miles that you can drive?

What is the implied domain of C ?

EXIT SLIP

