Chapter 3 Linear and Quadratic Functions

Section 1 Linear Functions, Their Properties, and Linear Models

When an equation of a line is written in slope-intercept form with function notation we call it a **linear function**

$$f(x) = mx + b$$
 (m = slope, b = y-intercept)

Average Rate of change of a linear function is constant and its known as slope:

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} \qquad \frac{\sqrt{-\sqrt{2}}}{\sqrt{-\sqrt{2}}}$$

Determining if increasing, decreasing, or constant is dependent on slope!

Increasing = positive slope

Decreasing = negative slope

Constant = zero slope

Modeling with a Linear Function

If the average rate of change is a constant m, a linear function f(x) can be used to model the relation between the two variables as follows:

$$f(x) = mx + b$$

Where b is the value of f at 0, that is f(0) = b

Example 1: (# 21 pg. 133)

Determine whether the given function is linear or nonlinear. If it is linear, determine the equation of the line.

Example 2: (#29 pg. 133)

$$f(x) = 4x - 1$$
 $g(x) = -2x + 5$

a) Solve
$$f(x) = 0$$

$$4x - 1 = 0$$

$$4x = 1$$

$$x = 1/4$$

c) Solve
$$f(x) = g(x)$$

$$4x-1 = -2x+5$$

$$6x-1 = 5$$

$$6x = 6$$

$$x = 1$$

d) Solve
$$f(x) \le g(x)$$

$$4x-1 \le -2x+5$$

$$6x-1 \le 5$$

$$6x \le 6$$

$$x \le 6$$

Example 2 continued: (#29 pg. 133)

$$f(x) = 4x - 1$$
 $g(x) = -2x + 5$

e) Graph y = f(x) and y = g(x) and label the point that represents the solution to

the equation f(x) = g(x).

Example 3: (#31 pg. 133)

Use the following figure:

a) Solve
$$f(x) = 50 \times = 40$$

c) Solve
$$f(x) = 0 \quad x = - \downarrow \downarrow \downarrow$$

b) Solve
$$f(x) = 80 \times 2 \times 2 \times 3$$

d) Solve
$$f(x) > 50 \times > 10$$

f) Solve
$$0 < f(x) < 80 - 40 < x < 88$$

Example 4: (#37 pg. 134)

Car Rentals

$$C(x) = 0.25x + 35$$
; $x = miles$, $C = cost$

What is the cost if you drive 40 miles?

$$C = .25(40) + 35$$
 $10 + 35$
 $C = .45 \Rightarrow 45

If the cost of renting the truck is \$80, how many miles did you drive?

$$80 = .25 \times +35$$

 $45 = .25 \times$
 $180 = \times \implies 180$ miles

Example 4 continued: (#37 pg. 134)

Car Rentals

$$C(x) = 0.25x + 35$$
; $x = miles$, $C = cost$

Suppose you want the cost to be no more than \$100, what is the maximum number of miles that you can drive?

$$100 \ge .25 \times +35$$
 $65 \ge .25 \times$
 $260 \ge \times \Rightarrow 260 \text{ miles}$

What is the implied domain of C?

EXIT SLIP